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mBuild: A hierarchical, component based molecule builder

With just a few lines of mBuild code, you can assemble reusable components into complex molecular
systems for molecular simulations.

• mBuild is designed to minimize or even eliminate the need to explicitly translate and orient
components when building systems: you simply tell it to connect two pieces!

• mBuild keeps track of the system’s topology so you don’t have to worry about manually defining
bonds when constructing chemically bonded structures from smaller components.

1 Example system

Components in dashed boxes are drawn by hand using, e.g., Avogadro1 or generated elsewhere. Each
component is wrapped as a python class with user defined attachment sites, or ports. That’s the hard
part! Now mBuild can do the rest. Each component further down the hierarchy is, again, a simple
python class that describes which piece should connect to which piece.

Ultimately, complex systems structures can be created with just a line or two of code. Additionally,
this approach seamlessly exposes tunable parameters within the hierarchy so you can actually create
whole families of structures by adjusting a variable or two:

pattern = Random2DPattern(20) # A random arrangement of 20 pieces on a 2D surface.
brush_layer = BrushLayer(chain_lenth=20, pattern=pattern, tile_x=3, tile_y=2)

1 https://avogadro.cc
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2 Various sub-portions of this library may be independently distributed under different licenses. See
those files for their specific terms.

2 http://opensource.org/licenses/MIT
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2 Installation

2.1 Install with conda3

$ conda install -c omnia -c mosdef -c conda-forge mbuild

Alternatively you can add all the required channels to your .condarc after which you can simply
install without specifying the channels:

$ conda config --add channels omnia
$ conda config --add channels mosdef
$ conda config --add channels conda-forge
$ conda install mbuild

Note: The MDTraj website4 makes a nice case for using Python and in particular the Anaconda
scientific python distribution5 to manage your numerical and scientific Python packages.

2.2 Install with pip6

$ pip install mbuild

Note: PACKMOL7 is not available on pip but can be installed from source or via conda.

2.3 Install an editable version from source

$ git clone https://github.com/mosdef-hub/mbuild
$ cd mbuild
$ pip install -e .

To make your life easier, we recommend that you use a pre-packaged Python distribution like Contin-
uum’s Anaconda8 in order to get all of the dependencies.

2.4 Supported Python Versions

Python 3.6 and 3.7 are officially supported, including testing during development and packaging.
Support for Python 2.7 has been dropped as of August 6, 2019. Other Python versions, such as 3.8 and
3.5 and older, may successfully build and function but no guarantee is made.

2.5 Testing your installation

mBuild uses py.test for unit testing. To run them simply type run the following while in the base
directory:

3 http://continuum.io/downloads
4 http://mdtraj.org/latest/new_to_python.html
5 http://continuum.io/downloads
6 https://pypi.org/project/pip/
7 http://m3g.iqm.unicamp.br/packmol/
8 https://store.continuum.io/
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$ conda install pytest
$ py.test -v

3 Tutorials

The following section was generated from docs/tutorials/tutorial_methane.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Methane: Compounds and bonds

Note: mBuild expects all distance units to be in nanometers.

The primary building block in mBuild is a Compound. Anything you construct will inherit from this
class. Let’s start with some basic imports and initialization:

import mbuild as mb

class Methane(mb.Compound):
def __init__(self):

super(Methane, self).__init__()

Any Compound can contain other Compounds which can be added using its add() method. Compounds
at the bottom of such a hierarchy are referred to as Particles. Note however, that this is purely
semantic in mBuild to help clearly designate the bottom of a hierarchy.

import mbuild as mb

class Methane(mb.Compound):
def __init__(self):

super(Methane, self).__init__()
carbon = mb.Particle(name='C')
self.add(carbon, label='C[$]')

hydrogen = mb.Particle(name='H', pos=[0.11, 0, 0])
self.add(hydrogen, label='HC[$]')

By default a created Compound/Particle will be placed at 0, 0, 0 as indicated by its pos attribute.
The Particle objects contained in a Compound, the bottoms of the hierarchy, can be referenced via the
particles method which returns a generator of all Particle objects contained below the Compound
in the hierarchy.

Note: All positions in mBuild are stored in nanometers.

Any part added to a Compound can be given an optional, descriptive string label. If the label ends with
the characters [$], a list will be created in the labels. Any subsequent parts added to the Compound
with the same label prefix will be appended to the list. In the example above, we’ve labeled the
hydrogen as HC[$]. So this first part, with the label prefix HC, is now referenceable via self['HC'][0].
The next part added with the label HC[$] will be referenceable via self['HC'][1].

Now let’s use these styles of referencing to connect the carbon to the hydrogen. Note that for typical
use cases, you will almost never have to explicitly define a bond when using mBuild - this is just to
show you what’s going on under the hood:

import mbuild as mb

class Methane(mb.Compound):
def __init__(self):

(continues on next page)
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(continued from previous page)

super(Methane, self).__init__()
carbon = mb.Particle(name='C')
self.add(carbon, label='C[$]')

hydrogen = mb.Particle(name='H', pos=[0.11, 0, 0])
self.add(hydrogen, label='HC[$]')

self.add_bond((self[0], self['HC'][0]))

As you can see, the carbon is placed in the zero index of self. The hydrogen could be referenced via
self[1] but since we gave it a fancy label, it’s also referenceable via self['HC'][0].

Alright now that we’ve got the basics, let’s finish building our Methane and take a look at it:

import mbuild as mb

class Methane(mb.Compound):
def __init__(self):

super(Methane, self).__init__()
carbon = mb.Particle(name='C')
self.add(carbon, label='C[$]')

hydrogen = mb.Particle(name='H', pos=[0.1, 0, -0.07])
self.add(hydrogen, label='HC[$]')

self.add_bond((self[0], self['HC'][0]))

self.add(mb.Particle(name='H', pos=[-0.1, 0, -0.07]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0, 0.1, 0.07]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0, -0.1, 0.07]), label='HC[$]')

self.add_bond((self[0], self['HC'][1]))
self.add_bond((self[0], self['HC'][2]))
self.add_bond((self[0], self['HC'][3]))

methane = Methane()
methane.visualize()

# Save to .mol2
methane.save('methane.mol2',overwrite=True)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . docs/tutorials/tutorial_methane.ipynb ends here.

The following section was generated from docs/tutorials/tutorial_ethane.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Ethane: Reading from files, Ports and coordinate transforms

Note: mBuild expects all distance units to be in nanometers.

In this example, we’ll cover reading molecular components from files, introduce the concept of Ports
and start using some coordinate transforms.

First, we need to import the mbuild package:

import mbuild as mb

As you probably noticed while creating your methane molecule in the last tutorial, manually adding
Particles and Bonds to a Compound is a bit cumbersome. The easiest way to create small, reusable
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components, such as methyls, amines or monomers, is to hand draw them using software like Avo-
gadro9 and export them as either a .pdb or .mol2 file (the file should contain connectivity information).

Let’s start by reading a methyl group from a .pdb file:

import mbuild as mb

ch3 = mb.load('ch3.pdb')
ch3.visualize()

Now let’s use our first coordinate transform to center the methyl at its carbon atom:

import mbuild as mb

ch3 = mb.load('ch3.pdb')
mb.translate(ch3, -ch3[0].pos) # Move carbon to origin.

Now we have a methyl group loaded up and centered. In order to connect Compounds in mBuild, we
make use of a special type of Compound: the Port. A Port is a Compound with two sets of four “ghost”
Particles. In addition Ports have an anchor attribute which typically points to a particle that the
Port should be associated with. In our methyl group, the Port should be anchored to the carbon
atom so that we can now form bonds to this carbon:

import mbuild as mb

ch3 = mb.load('ch3.pdb')
mb.translate(ch3, -ch3[0].pos) # Move carbon to origin.

port = mb.Port(anchor=ch3[0])
ch3.add(port, label='up')

# Place the port at approximately half a C-C bond length.
mb.translate(ch3['up'], [0, -0.07, 0])

By default, Ports are never output from the mBuild structure. However, it can be useful to look at a
molecule with the Ports to check your work as you go:

ch3.visualize(show_ports=True)

Now we wrap the methyl group into a python class, so that we can reuse it as a component to build
more complex molecules later.

import mbuild as mb

class CH3(mb.Compound):
def __init__(self):

super(CH3, self).__init__()

mb.load('ch3.pdb', compound=self)
mb.translate(self, -self[0].pos) # Move carbon to origin.

port = mb.Port(anchor=self[0])
self.add(port, label='up')
# Place the port at approximately half a C-C bond length.
mb.translate(self['up'], [0, -0.07, 0])

When two Ports are connected, they are forced to overlap in space and their parent Compounds are
rotated and translated by the same amount.

9 http://avogadro.cc/wiki/Main_Page
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Note: If we tried to connect two of our methyls right now using only one set of four ghost particles, not
only would the Ports overlap perfectly, but the carbons and hydrogens would also perfectly overlap -
the 4 ghost atoms in the Port are arranged identically with respect to the other atoms. For example, if
a Port and its direction is indicated by “<-“, forcing the port in <-CH3 to overlap with <-CH3 would
just look like <-CH3 (perfectly overlapping atoms).

To solve this problem, every port contains a second set of 4 ghost atoms pointing in the opposite
direction. When two Compounds are connected, the port that places the anchor atoms the farthest
away from each other is chosen automatically to prevent this overlap scenario.

When <->CH3 and <->CH3 are forced to overlap, the CH3<->CH3 is automatically chosen.

Now the fun part: stick ‘em together to create an ethane:

ethane = mb.Compound()

ethane.add(CH3(), label="methyl_1")
ethane.add(CH3(), label="methyl_2")
mb.force_overlap(move_this=ethane['methyl_1'],

from_positions=ethane['methyl_1']['up'],
to_positions=ethane['methyl_2']['up'])

Above, the force_overlap() function takes a Compound and then rotates and translates it such that
two other Compounds overlap. Typically, as in this case, those two other Compounds are Ports - in our
case, methyl1['up'] and methyl2['up'].

ethane.visualize()

ethane.visualize(show_ports=True)

Similarly, if we want to make ethane a reusable component, we need to wrap it into a python class.

import mbuild as mb

class Ethane(mb.Compound):
def __init__(self):

super(Ethane, self).__init__()

self.add(CH3(), label="methyl_1")
self.add(CH3(), label="methyl_2")
mb.force_overlap(move_this=self['methyl_1'],

from_positions=self['methyl_1']['up'],
to_positions=self['methyl_2']['up'])

ethane = Ethane()
ethane.visualize()

# Save to .mol2
ethane.save('ethane.mol2', overwrite=True)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . docs/tutorials/tutorial_ethane.ipynb ends here.

The following section was generated from docs/tutorials/tutorial_monolayer.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Monolayer: Complex hierarchies, patterns, tiling and writing to files

Note: mBuild expects all distance units to be in nanometers.

In this example, we’ll cover assembling more complex hierarchies of components using patterns, tiling
and how to output systems to files. To illustrate these concepts, let’s build an alkane monolayer on a
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crystalline substrate.

First, let’s build our monomers and functionalized them with a silane group which we can then
attach to the substrate. The Alkane example uses the polymer tool to combine CH2 and CH3 repeat
units. You also have the option to cap the front and back of the chain or to leave a CH2 group with
a dangling port. The Silane compound is a Si(OH)2 group with two ports facing out from the
central Si. Lastly, we combine alkane with silane and add a label to AlkylSilane which points
to, silane['down']. This allows us to reference it later using AlkylSilane['down'] rather than
AlkylSilane['silane']['down'].

Note: In Compounds with multiple Ports, by convention, we try to label every Port successively as
‘up’, ‘down’, ‘left’, ‘right’, ‘front’, ‘back’ which should roughly correspond to their relative orientations.
This is a bit tricky to enforce because the system is so flexible so use your best judgement and try to
be consistent! The more components we collect in our library with the same labeling conventions, the
easier it becomes to build ever more complex structures.

import mbuild as mb

from mbuild.examples import Alkane
from mbuild.lib.moieties import Silane

class AlkylSilane(mb.Compound):
"""A silane functionalized alkane chain with one Port. """
def __init__(self, chain_length):

super(AlkylSilane, self).__init__()

alkane = Alkane(chain_length, cap_end=False)
self.add(alkane, 'alkane')
silane = Silane()
self.add(silane, 'silane')
mb.force_overlap(self['alkane'], self['alkane']['down'], self['silane']['up'])

# Hoist silane port to AlkylSilane level.
self.add(silane['down'], 'down', containment=False)

AlkylSilane(5).visualize()

Now let’s create a substrate to which we can later attach our monomers:

import mbuild as mb
from mbuild.lib.surfaces import Betacristobalite

surface = Betacristobalite()
tiled_surface = mb.lib.recipes.TiledCompound(surface, n_tiles=(2, 1, 1))

Here we’ve imported a beta-cristobalite surface from our component library. The TiledCompound tool
allows you replicate any Compound in the x-, y- and z-directions by any number of times - 2, 1 and 1

for our case.

Next, let’s create our monomer and a hydrogen atom that we’ll place on unoccupied surface sites:

from mbuild.lib.atoms import H
alkylsilane = AlkylSilane(chain_length=10)
hydrogen = H()

Then we need to tell mBuild how to arrange the chains on the surface. This is accomplished with
the “pattern” tools. Every pattern is just a collection of points. There are all kinds of patterns like
spherical, 2D, regular, irregular etc. When you use the apply_pattern command, you effectively
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superimpose the pattern onto the host compound, mBuild figures out what the closest ports are to the
pattern points and then attaches copies of the guest onto the binding sites identified by the pattern:

pattern = mb.Grid2DPattern(8, 8) # Evenly spaced, 2D grid of points.

# Attach chains to specified binding sites. Other sites get a hydrogen.
chains, hydrogens = pattern.apply_to_compound(host=tiled_surface, guest=alkylsilane,␣
↪→backfill=hydrogen)

Also note the backfill optional argument which allows you to place a different compound on any
unused ports. In this case we want to backfill with hydrogen atoms on every port without a chain.

And that’s it! Check out examples.alkane_monolayer for the fully wrapped class.

monolayer = mb.Compound([tiled_surface, chains, hydrogens])
monolayer.visualize() # Warning: may be slow in IPython notebooks

# Save as .mol2 file
monolayer.save('monolayer.mol2', overwrite=True)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . docs/tutorials/tutorial_monolayer.ipynb ends here.

The following section was generated from docs/tutorials/tutorial_simple_LJ.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4 Point Particles: Basic system initialization

Note: mBuild expects all distance units to be in nanometers.

This tutorial focuses on the usage of basic system initialization operations, as applied to simple point
particle systems (i.e., generic Lennard-Jones particles rather than specific atoms).

The code below defines several point particles in a cubic arrangement. Note, the color and radius
associated with a Particle name can be set and passed to the visualize command. Colors are passed in
hex format (see http://www.color-hex.com/color/bfbfbf).

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_particle1 = mb.Particle(name='LJ', pos=[0, 0, 0])
self.add(lj_particle1)

lj_particle2 = mb.Particle(name='LJ', pos=[1, 0, 0])
self.add(lj_particle2)

lj_particle3 = mb.Particle(name='LJ', pos=[0, 1, 0])
self.add(lj_particle3)

lj_particle4 = mb.Particle(name='LJ', pos=[0, 0, 1])
self.add(lj_particle4)

lj_particle5 = mb.Particle(name='LJ', pos=[1, 0, 1])
self.add(lj_particle5)

lj_particle6 = mb.Particle(name='LJ', pos=[1, 1, 0])
self.add(lj_particle6)

lj_particle7 = mb.Particle(name='LJ', pos=[0, 1, 1])
self.add(lj_particle7)

(continues on next page)
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(continued from previous page)

lj_particle8 = mb.Particle(name='LJ', pos=[1, 1, 1])
self.add(lj_particle8)

monoLJ = MonoLJ()
monoLJ.visualize()

While this would work for defining a single molecule or very small system, this would not be efficient
for large systems. Instead, the clone and translate operator can be used to facilitate automation. Below,
we simply define a single prototype particle (lj_proto), which we then copy and translate about the
system.

Note, mBuild provides two different translate operations, “translate” and “translate_to”. “translate”
moves a particle by adding the vector the original position, whereas “translate_to” move a particle
to the specified location in space. Note, “translate_to” maintains the internal spatial relationships of
a collection of particles by first shifting the center of mass of the collection of particles to the origin,
then translating to the specified location. Since the lj_proto particle in this example starts at the origin,
these two commands produce identical behavior.

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

for i in range(0,2):
for j in range(0,2):

for k in range(0,2):
lj_particle = mb.clone(lj_proto)
pos = [i,j,k]
mb.translate(lj_particle, pos)
self.add(lj_particle)

monoLJ = MonoLJ()
monoLJ.visualize()

To simplify this process, mBuild provides several build-in patterning tools, where for example,
Grid3DPattern can be used to perform this same operation. Grid3DPattern generates a set of points,
from 0 to 1, which get stored in the variable “pattern”. We need only loop over the points in pattern,
cloning, translating, and adding to the system. Note, because Grid3DPattern defines points between 0

and 1, they must be scaled based on the desired system size, i.e., pattern.scale(2).

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern = mb.Grid3DPattern(2, 2, 2)
pattern.scale(2)

for pos in pattern:
lj_particle = mb.clone(lj_proto)
mb.translate(lj_particle, pos)

(continues on next page)
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(continued from previous page)

self.add(lj_particle)

monoLJ = MonoLJ()
monoLJ.visualize()

Larger systems can therefore be easily generated by toggling the values given to Grid3DPattern. Other
patterns can also be generated using the same basic code, such as a 2D grid pattern:

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern = mb.Grid2DPattern(5, 5)
pattern.scale(5)

for pos in pattern:
lj_particle = mb.clone(lj_proto)
mb.translate(lj_particle, pos)
self.add(lj_particle)

monoLJ = MonoLJ()
monoLJ.visualize()

Points on a sphere can be generated using SpherePattern. Points on a disk using DisKPattern, etc.

Note to show both simultaneously, we shift the x-coordinate of Particles in the sphere by -1 (i.e.,
pos[0]-=1.0) and +1 for the disk (i.e, pos[0]+=1.0).

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_sphere = mb.SpherePattern(200)
pattern_sphere.scale(0.5)

for pos in pattern_sphere:
lj_particle = mb.clone(lj_proto)
pos[0]-=1.0
mb.translate(lj_particle, pos)
self.add(lj_particle)

pattern_disk = mb.DiskPattern(200)
pattern_disk.scale(0.5)
for pos in pattern_disk:

lj_particle = mb.clone(lj_proto)
pos[0]+=1.0
mb.translate(lj_particle, pos)
self.add(lj_particle)

monoLJ = MonoLJ()
monoLJ.visualize()

We can also take advantage of the hierachical nature of mBuild to accomplish the same task more
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cleanly. Below we create a component that corresponds to the sphere (class SphereLJ), and one that
corresponds to the disk (class DiskLJ), and then instantiate and shift each of these individually in the
MonoLJ component.

import mbuild as mb

class SphereLJ(mb.Compound):
def __init__(self):

super(SphereLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_sphere = mb.SpherePattern(200)
pattern_sphere.scale(0.5)

for pos in pattern_sphere:
lj_particle = mb.clone(lj_proto)
mb.translate(lj_particle, pos)
self.add(lj_particle)

class DiskLJ(mb.Compound):
def __init__(self):

super(DiskLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_disk = mb.DiskPattern(200)
pattern_disk.scale(0.5)
for pos in pattern_disk:

lj_particle = mb.clone(lj_proto)
mb.translate(lj_particle, pos)
self.add(lj_particle)

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()

sphere = SphereLJ();
pos=[-1, 0, 0]
mb.translate(sphere, pos)
self.add(sphere)

disk = DiskLJ();
pos=[1, 0, 0]
mb.translate(disk, pos)
self.add(disk)

monoLJ = MonoLJ()
monoLJ.visualize()

Again, since mBuild is hierarchical, the pattern functions can be used to generate large systems of any
arbitary component. For example, we can replicate the SphereLJ component on a regular array.

import mbuild as mb

class SphereLJ(mb.Compound):
def __init__(self):

super(SphereLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

(continues on next page)
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(continued from previous page)

pattern_sphere = mb.SpherePattern(13)
pattern_sphere.scale(0.5)

for pos in pattern_sphere:
lj_particle = mb.clone(lj_proto)
mb.translate(lj_particle, pos)
self.add(lj_particle)

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
sphere = SphereLJ();

pattern = mb.Grid3DPattern(3, 3, 3)
pattern.scale(10)

for pos in pattern:
lj_sphere = mb.clone(sphere)
mb.translate_to(lj_sphere, pos)
#shift the particle so the center of mass
#of the system is at the origin
mb.translate(lj_sphere, [-5,-5,-5])

self.add(lj_sphere)

monoLJ = MonoLJ()
monoLJ.visualize()

Several functions exist for rotating compounds. For example, the spin command allows a compound
to be rotated, in place, about a specific axis (i.e., it considers the origin for the rotation to lie at the
compound’s center of mass).

import mbuild as mb
import random
from numpy import pi

class CubeLJ(mb.Compound):
def __init__(self):

super(CubeLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern = mb.Grid3DPattern(2, 2, 2)
pattern.scale(1)

for pos in pattern:
lj_particle = mb.clone(lj_proto)
mb.translate(lj_particle, pos)
self.add(lj_particle)

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
cube_proto = CubeLJ();

pattern = mb.Grid3DPattern(3, 3, 3)
pattern.scale(10)
rnd = random.Random()

(continues on next page)
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(continued from previous page)

rnd.seed(123)

for pos in pattern:
lj_cube = mb.clone(cube_proto)
mb.translate_to(lj_cube, pos)
#shift the particle so the center of mass
#of the system is at the origin
mb.translate(lj_cube, [-5,-5,-5])
mb.spin(lj_cube, rnd.uniform(0, 2 * pi), [1, 0, 0])
mb.spin(lj_cube, rnd.uniform(0, 2 * pi), [0, 1, 0])
mb.spin(lj_cube, rnd.uniform(0, 2 * pi), [0, 0, 1])

self.add(lj_cube)

monoLJ = MonoLJ()
monoLJ.visualize()

Configurations can be dumped to file using the save command; this takes advantage of MDTraj and
supports a range of file formats (see http://MDTraj.org).

#save as xyz file
monoLJ.save('output.xyz')
#save as mol2
monoLJ.save('output.mol2')
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . docs/tutorials/tutorial_simple_LJ.ipynb ends here.

The following section was generated from docs/tutorials/tutorial_polymers.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.5 Building a Simple Alkane

The purpose of this tutorial is to demonstrate the construction of an alkane polymer and provide
familiarity with many of the underlying functions in mBuild. Note that a robust polymer construction
recipe already exists in mBuild, which will also be demonstrated at the end of the tutorial.

Setting up the monomer

The first step is to construct the basic repeat unit for the alkane, i.e., a CH2 group, similar to the
construction of the CH3 monomer in the prior methane tutorial. Rather than importing the coordinates
from a pdb file, as in the previous example, we will instead explicitly define them in the class. Recall
that distance units are nm in mBuild.

import mbuild as mb

class CH2(mb.Compound):
def __init__(self):

super(CH2, self).__init__()
self.add(mb.Particle(name='C', pos=[0,0,0]), label='C[$]')

# Add hydrogens
self.add(mb.Particle(name='H', pos=[-0.109, 0, 0.0]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0.109, 0, 0.0]), label='HC[$]')

# Add ports anchored to the carbon
self.add(mb.Port(anchor=self[0]), label='up')
self.add(mb.Port(anchor=self[0]), label='down')

(continues on next page)
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(continued from previous page)

# Move the ports approximately half a C-C bond length away from the carbon
mb.translate(self['up'], [0, -0.154/2, 0])
mb.translate(self['down'], [0, 0.154/2, 0])

monomer = CH2()
monomer.visualize(show_ports=True)

This configuration of the monomer is not a particularly realistic conformation. One could use this
monomer to construct a polymer and then apply an energy minimization scheme, or, as we will
demonstrate here, we can use mBuild’s rotation commands to provide a more realistic starting point.

Below, we use the same basic script, but now apply a rotation to the hydrogen atoms. Since the
hydrogens start 180° apart and we know they should be ~109.5° apart, each should be rotated half of
the difference closer to each other around the y-axis. Note that the rotation angle is given in radians.
Similarly, the ports should be rotated around the x-axis by the same amount so that atoms can be
added in a realistic orientation.

import numpy as np
import mbuild as mb

class CH2(mb.Compound):
def __init__(self):

super(CH2, self).__init__()
self.add(mb.Particle(name='C', pos=[0,0,0]), label='C[$]')
self.add(mb.Particle(name='H', pos=[-0.109, 0, 0.0]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0.109, 0, 0.0]), label='HC[$]')
theta = 0.5 * (180 - 109.5) * np.pi / 180
mb.rotate(self['HC'][0], theta, around=[0, 1, 0])
mb.rotate(self['HC'][1], -theta, around=[0, 1, 0])

self.add(mb.Port(anchor=self[0]), label='up')
mb.translate(self['up'], [0, -0.154/2, 0])
mb.rotate(self['up'], theta, around=[1, 0, 0])
self.add(mb.Port(anchor=self[0]), label='down')
mb.translate(self['down'], [0, 0.154/2, 0])
mb.rotate(self['down'], -theta, around=[1, 0, 0])

monomer = CH2()
monomer.visualize(show_ports=True)

Defining the polymerization class

With a basic monomer construct, we can now construct a polymer by connecting the ports together.
Here, we first instantiate one instance of the CH2 class as 1ast_monomer, then use the clone function to
make a copy. The force_overlap() function is used to connect the 'up' port from current_monomer
to the 'down' port of last_mononer.

class AlkanePolymer(mb.Compound):
def __init__(self):

super(AlkanePolymer, self).__init__()
last_monomer = CH2()
self.add(last_monomer)
for i in range(3):

current_monomer = CH2()
mb.force_overlap(move_this=current_monomer,

from_positions=current_monomer['up'],
(continues on next page)
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to_positions=last_monomer['down'])
self.add(current_monomer)
last_monomer = current_monomer

polymer = AlkanePolymer()
polymer.visualize(show_ports=True)

Visualization of this structure demonstrates a problem; the polymer curls up on itself. This is a result
of the fact that ports not only define the location in space, but also an orientation. This can be trivially
fixed, by first rotating the port 180° around the y-axis.

We can also add a variable chain_length both to the for loop and init that will allow the length of
the polymer to be adjusted when the class is instantiated.

import numpy as np
import mbuild as mb

class CH2(mb.Compound):
def __init__(self):

super(CH2, self).__init__()
self.add(mb.Particle(name='C', pos=[0,0,0]), label='C[$]')
self.add(mb.Particle(name='H', pos=[-0.109, 0, 0.0]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0.109, 0, 0.0]), label='HC[$]')
theta = 0.5 * (180 - 109.5) * np.pi / 180
mb.rotate(self['HC'][0], theta, around=[0, 1, 0])
mb.rotate(self['HC'][1], -theta, around=[0, 1, 0])

self.add(mb.Port(anchor=self[0]), label='up')
mb.translate(self['up'], [0, -0.154/2, 0])
mb.rotate(self['up'], theta, around=[1, 0, 0])
self.add(mb.Port(anchor=self[0]), label='down')
mb.translate(self['down'], [0, 0.154/2, 0])
mb.rotate(self['down'], np.pi, [0, 1, 0])
mb.rotate(self['down'], -theta, around=[1, 0, 0])

class AlkanePolymer(mb.Compound):
def __init__(self, chain_length=1):

super(AlkanePolymer, self).__init__()
last_monomer = CH2()
self.add(last_monomer)
for i in range (chain_length-1):

current_monomer = CH2()

mb.force_overlap(move_this=current_monomer,
from_positions=current_monomer['up'],
to_positions=last_monomer['down'])

self.add(current_monomer)
last_monomer=current_monomer

polymer = AlkanePolymer(chain_length=10)
polymer.visualize(show_ports=True)

Using mBuild’s Polymer Class

mBuild provides a prebuilt class to perform this basic functionality. Since it is designed to be more
general, it takes as an argument not just the chain length, but also the monomer and the port labels
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(e.g., ‘up’ and ‘down’, since these labels are user defined).

polymer = mb.lib.recipes.Polymer(CH2(), 10, port_labels=('up', 'down'))
polymer.visualize()

Building a System of Alkanes

A system of alkanes can be constructed by simply cloning the polymer constructed above and trans-
lating and/or rotating the alkanes in space. mBuild provides many routines that can be used to create
different patterns, to which the polymers can be shifted.

# create the polymer
polymer = mb.lib.recipes.Polymer(CH2(), 10, port_labels=('up', 'down'))

# the pattern we generate puts points in the xy-plane, so we'll rotate the polymer
# so that it is oriented normal to the xy-plane
mb.rotate(polymer, np.pi/2, [1, 0, 0])

# define a compound to hold all the polymers
system = mb.Compound()

# create a pattern of points to fill a disk
# patterns are generated between 0 and 1,
# and thus need to be scaled to provide appropriate spacing
pattern_disk = mb.DiskPattern(50)
pattern_disk.scale(5)

# now clone the polymer and move it to the points in the pattern
for pos in pattern_disk:

current_polymer = mb.clone(polymer)
mb.translate(current_polymer, pos)
system.add(current_polymer)

system.visualize()

Other patterns can be used, e.g., the Grid3DPattern. We can also use the rotation commands to
randomize the orientation.

import random

polymer = mb.lib.recipes.Polymer(CH2(), 10, port_labels=('up', 'down'))
system = mb.Compound()
mb.rotate(polymer, np.pi/2, [1, 0, 0])

pattern_disk = mb.Grid3DPattern(5, 5, 5)
pattern_disk.scale(8.0)

for pos in pattern_disk:
current_polymer = mb.clone(polymer)
for around in [(1, 0, 0), (0, 1, 0), (0, 0, 1)]: # rotate around x, y, and z

mb.rotate(current_polymer, random.uniform(0, np.pi), around)
mb.translate(current_polymer, pos)
system.add(current_polymer)

system.visualize()

mBuild also provides an interface to PACKMOL, allowing the creation of a randomized configuration.
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polymer = mb.lib.recipes.Polymer(CH2(), 5, port_labels=('up', 'down'))
system = mb.fill_box(polymer, n_compounds=100, overlap=1.5, box=[10,10,10])
system.visualize()

Variations

Rather than a linear chain, the Polymer class we wrote can be easily changed such that small perturba-
tions are given to each port. To avoid accumulation of deviations from the equilibrium angle, we will
clone an unperturbed monomer each time (i.e., monomer_proto) before applying a random variation.

We also define a variable delta, which will control the maximum amount of perturbation. Note that
large values of delta may result in the chain overlapping itself, as mBuild does not currently include
routines to exclude such overlaps.

import mbuild as mb

import random

class AlkanePolymer(mb.Compound):
def __init__(self, chain_length=1, delta=0):

super(AlkanePolymer, self).__init__()
monomer_proto = CH2()
last_monomer = CH2()
mb.rotate(last_monomer['down'], random.uniform(-delta,delta), [1, 0, 0])
mb.rotate(last_monomer['down'], random.uniform(-delta,delta), [0, 1, 0])
self.add(last_monomer)
for i in range(chain_length-1):

current_monomer = mb.clone(monomer_proto)
mb.rotate(current_monomer['down'], random.uniform(-delta,delta), [1, 0, 0])
mb.rotate(current_monomer['down'], random.uniform(-delta,delta), [0, 1, 0])
mb.force_overlap(move_this=current_monomer,

from_positions=current_monomer['up'],
to_positions=last_monomer['down'])

self.add(current_monomer)
last_monomer=current_monomer

polymer = AlkanePolymer(chain_length = 200, delta=0.4)
polymer.visualize()
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . docs/tutorials/tutorial_polymers.ipynb ends here.

4 Data Structures

The primary building blocks in an mBuild hierarchy inherit from the Compound class. Compounds
maintain an ordered set of children which are other Compounds. In addition, an independent, or-
dered dictionary of labels is maintained through which users can reference any other Compound in
the hierarchy via descriptive strings. Every Compound knows its parent Compound, one step up in
the hierarchy, and knows which Compounds reference it in their labels. Ports are a special type of
Compound which are used internally to connect different Compounds using the equivalence transfor-
mations described below.

Compounds at the bottom of an mBuild hierarchy, the leafs of the tree, are referred to as Particles and
can be instantiated as foo = mb.Particle(name='bar'). Note however, that this merely serves to
illustrate that this Compound is at the bottom of the hierarchy; Particle is simply an alias for Compound
which can be used to clarify the intended role of an object you are creating. The method Compound.
particles() traverses the hierarchy to the bottom and yields those Compounds. Compound.root()
returns the compound at the top of the hierarchy.
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4.1 Compound

class mbuild.compound.Compound(subcompounds=None, name=None, pos=None, charge=0.0, pe-
riodicity=None, port_particle=False)

A building block in the mBuild hierarchy.

Compound is the superclass of all composite building blocks in the mBuild hierarchy. That is,
all composite building blocks must inherit from compound, either directly or indirectly. The de-
sign of Compound follows the Composite design pattern (Gamma, Erich; Richard Helm; Ralph
Johnson; John M. Vlissides (1995). Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley. p. 395. ISBN 0-201-63361-2.), with Compound being the composite, and
Particle playing the role of the primitive (leaf) part, where Particle is in fact simply an alias to
the Compound class.

Compound maintains a list of children (other Compounds contained within), and provides a
means to tag the children with labels, so that the compounds can be easily looked up later.
Labels may also point to objects outside the Compound’s containment hierarchy. Compound
has built-in support for copying and deepcopying Compound hierarchies, enumerating particles
or bonds in the hierarchy, proximity based searches, visualization, I/O operations, and a number
of other convenience methods.

Parameters

subcompounds [mb.Compound or list of mb.Compound, optional, de-
fault=None] One or more compounds to be added to self.

name [str, optional, default=self.__class__.__name__] The type of Compound.

pos [np.ndarray, shape=(3,), dtype=float, optional, default=[0, 0, 0]] The position
of the Compound in Cartestian space

charge [float, optional, default=0.0] Currently not used. Likely removed in next
release.

periodicity [np.ndarray, shape=(3,), dtype=float, optional, default=[0, 0, 0]] The
periodic lengths of the Compound in the x, y and z directions. Defaults to
zeros which is treated as non-periodic.

port_particle [bool, optional, default=False] Whether or not this Compound is
part of a Port

Attributes

bond_graph [mb.BondGraph] Graph-like object that stores bond information for
this Compound

children [OrderedSet] Contains all children (other Compounds).

labels [OrderedDict] Labels to Compound/Atom mappings. These do not neces-
sarily need not be in self.children.

parent [mb.Compound] The parent Compound that contains this part. Can be
None if this compound is the root of the containment hierarchy.

referrers [set] Other compounds that reference this part with labels.

rigid_id [int, default=None] The ID of the rigid body that this Compound belongs
to. Only Particles (the bottom of the containment hierarchy) can have integer
values for rigid_id. Compounds containing rigid particles will always have
rigid_id == None. See also contains_rigid.

boundingbox Compute the bounding box of the compound.

center The cartesian center of the Compound based on its Particles.
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contains_rigid Returns True if the Compound contains rigid bodies

max_rigid_id Returns the maximum rigid body ID contained in the Compound.

n_particles Return the number of Particles in the Compound.

n_bonds Return the number of bonds in the Compound.

root The Compound at the top of self’s hierarchy.

xyz Return all particle coordinates in this compound.

xyz_with_ports Return all particle coordinates in this compound including
ports.

add(self, new_child, label=None, containment=True, replace=False, inherit_periodicity=True, re-
set_rigid_ids=True)
Add a part to the Compound.

Note: This does not necessarily add the part to self.children but may instead be used to
add a reference to the part to self.labels. See ‘containment’ argument.

Parameters

new_child [mb.Compound or list-like of mb.Compound] The object(s) to be
added to this Compound.

label [str, optional] A descriptive string for the part.

containment [bool, optional, default=True] Add the part to self.children.

replace [bool, optional, default=True] Replace the label if it already exists.

inherit_periodicity [bool, optional, default=True] Replace the periodicity of
self with the periodicity of the Compound being added

reset_rigid_ids [bool, optional, default=True] If the Compound to be added
contains rigid bodies, reset the rigid_ids such that values remain distinct
from rigid_ids already present in self. Can be set to False if attempting to add
Compounds to an existing rigid body.

add_bond(self, particle_pair)
Add a bond between two Particles.

Parameters

particle_pair [indexable object, length=2, dtype=mb.Compound] The pair of
Particles to add a bond between

all_ports(self)
Return all Ports referenced by this Compound and its successors

Returns

list of mb.Compound A list of all Ports referenced by this Compound and its
successors

ancestors(self)
Generate all ancestors of the Compound recursively.

Yields

mb.Compound The next Compound above self in the hierarchy

available_ports(self)
Return all unoccupied Ports referenced by this Compound.

Returns
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list of mb.Compound A list of all unoccupied ports referenced by the Com-
pound

bonds(self)
Return all bonds in the Compound and sub-Compounds.

Yields

tuple of mb.Compound The next bond in the Compound

See also:

bond_graph.edges_iter Iterates over all edges in a BondGraph

boundingbox
Compute the bounding box of the compound.

Returns

mb.Box The bounding box for this Compound

center
The cartesian center of the Compound based on its Particles.

Returns

np.ndarray, shape=(3,), dtype=float The cartesian center of the Compound
based on its Particles

contains_rigid
Returns True if the Compound contains rigid bodies

If the Compound contains any particle with a rigid_id != None then contains_rigid will
return True. If the Compound has no children (i.e. the Compound resides at the bottom of
the containment hierarchy) then contains_rigid will return False.

Returns

bool True if the Compound contains any particle with a rigid_id != None

Notes

The private variable ‘_check_if_contains_rigid_bodies’ is used to help cache the status of
‘contains_rigid’. If ‘_check_if_contains_rigid_bodies’ is False, then the rigid body contain-
ment of the Compound has not changed, and the particle tree is not traversed, boosting
performance.

energy_minimize(self, forcefield=’UFF’, steps=1000, **kwargs)
Perform an energy minimization on a Compound

Default behavior utilizes Open Babel (http://openbabel.org/docs/dev/) to perform an en-
ergy minimization/geometry optimization on a Compound by applying a generic force
field

Can also utilize OpenMM (http://openmm.org/) to energy minimize after atomtyping a
Compound using Foyer (https://github.com/mosdef-hub/foyer) to apply a forcefield XML
file that contains valid SMARTS strings.

This function is primarily intended to be used on smaller components, with sizes on the
order of 10’s to 100’s of particles, as the energy minimization scales poorly with the number
of particles.

Parameters

steps [int, optional, default=1000] The number of optimization iterations
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forcefield [str, optional, default=’UFF’] The generic force field to
apply to the Compound for minimization. Valid options are
‘MMFF94’, ‘MMFF94s’, ‘’UFF’, ‘GAFF’, and ‘Ghemical’. Please re-
fer to the Open Babel documentation (http://open-babel. readthe-
docs.io/en/latest/Forcefields/Overview.html) when considering your
choice of force field. Utilizing OpenMM for energy minimization requires a
forcefield XML file with valid SMARTS strings. Please refer to (http://docs.
openmm.org/7.0.0/userguide/application.html#creating-force-fields) for
more information.

Keyword Arguments

————

algorithm [str, optional, default=’cg’] The energy minimization algorithm.
Valid options are ‘steep’, ‘cg’, and ‘md’, corresponding to steepest descent,
conjugate gradient, and equilibrium molecular dynamics respectively. For
_energy_minimize_openbabel

scale_bonds [float, optional, default=1] Scales the bond force constant (1 is
completely on). For _energy_minimize_openmm

scale_angles [float, optional, default=1] Scales the angle force constant (1 is
completely on) For _energy_minimize_openmm

scale_torsions [float, optional, default=1] Scales the torsional force constants
(1 is completely on) For _energy_minimize_openmm Note: Only Ryckaert-
Bellemans style torsions are currently supported

scale_nonbonded [float, optional, default=1] Scales epsilon (1 is completely
on) For _energy_minimize_openmm

References

If using _energy_minimize_openmm(), please cite: .. [R92550878d20b-1] P. Eastman, M. S.
Friedrichs, J. D. Chodera, R. J. Radmer,

C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye, M.
Houston, T. Stich, C. Klein, M. R. Shirts, and V. S. Pande. “OpenMM 4: A Reusable,
Extensible, Hardware Independent Library for High Performance Molecular Simu-
lation.” J. Chem. Theor. Comput. 9(1): 461-469. (2013).

If using _energy_minimize_openbabel(), please cite: .. [R92550878d20b-1] O’Boyle, N.M.;
Banck, M.; James, C.A.; Morley, C.;

Vandermeersch, T.; Hutchison, G.R. “Open Babel: An open chemical toolbox.”
(2011) J. Cheminf. 3, 33

If using the ‘MMFF94’ force field please also cite the following: .. [R92550878d20b-3] T.A.
Halgren, “Merck molecular force field. I. Basis, form,

scope, parameterization, and performance of MMFF94.” (1996) J. Comput. Chem.
17, 490-519

If using the ‘MMFF94s’ force field please cite the above along with: .. [R92550878d20b-8]
T.A. Halgren, “MMFF VI. MMFF94s option for energy minimization

studies.” (1999) J. Comput. Chem. 20, 720-729

If using the ‘UFF’ force field please cite the following: .. [R92550878d20b-3] Rappe, A.K.,
Casewit, C.J., Colwell, K.S., Goddard, W.A. III,
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Skiff, W.M. “UFF, a full periodic table force field for molecular mechanics and
molecular dynamics simulations.” (1992) J. Am. Chem. Soc. 114, 10024-10039

If using the ‘GAFF’ force field please cite the following: .. [R92550878d20b-3] Wang, J., Wolf,
R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.

“Development and testing of a general AMBER force field” (2004) J. Comput.
Chem. 25, 1157-1174

If using the ‘Ghemical’ force field please cite the following: .. [R92550878d20b-3] T. Hassinen
and M. Perakyla, “New energy terms for reduced

protein models implemented in an off-lattice force field” (2001) J. Comput. Chem.
22, 1229-1242

[R92550878d20b-1], [R92550878d20b-1], [2], [R92550878d20b-3], [4], [5], [6], [7],
[R92550878d20b-8], [R92550878d20b-3], [R92550878d20b-3], [R92550878d20b-3]

from_parmed(self, structure, coords_only=False, infer_hierarchy=True)
Extract atoms and bonds from a pmd.Structure.

Will create sub-compounds for every chain if there is more than one and sub-sub-
compounds for every residue.

Parameters

structure [pmd.Structure] The structure to load.

coords_only [bool] Set preexisting atoms in compound to coordinates given by
structure.

infer_hierarchy [bool, optional, default=True] If true, infer compound hierar-
chy from chains and residues

from_pybel(self, pybel_mol, use_element=True, coords_only=False, infer_hierarchy=True)
Create a Compound from a Pybel.Molecule

pybel_mol: pybel.Molecule use_element : bool, default True

If True, construct mb Particles based on the pybel Atom’s element. If False, con-
strucs mb Particles based on the pybel Atom’s type

coords_only [bool, default False] Set preexisting atoms in compound to coordinates given
by structure. Note: Not yet implemented, included only for parity with other conver-
sion functions

infer_hierarchy [bool, optional, default=True] If True, infer hierarchy from residues

from_trajectory(self, traj, frame=-1, coords_only=False, infer_hierarchy=True)
Extract atoms and bonds from a md.Trajectory.

Will create sub-compounds for every chain if there is more than one and sub-sub-
compounds for every residue.

Parameters

traj [mdtraj.Trajectory] The trajectory to load.

frame [int, optional, default=-1 (last)] The frame to take coordinates from.

coords_only [bool, optional, default=False] Only read coordinate information

infer_hierarchy [bool, optional, default=True] If True, infer compound hierar-
chy from chains and residues

generate_bonds(self, name_a, name_b, dmin, dmax)
Add Bonds between all pairs of types a/b within [dmin, dmax].
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Parameters

name_a [str] The name of one of the Particles to be in each bond

name_b [str] The name of the other Particle to be in each bond

dmin [float] The minimum distance between Particles for considering a bond

dmax [float] The maximum distance between Particles for considering a bond

get_smiles(self)
Get SMILES string for compound

Bond order is guessed with pybel and may lead to incorrect SMILES strings.

Returns

smiles_string: str

label_rigid_bodies(self, discrete_bodies=None, rigid_particles=None)
Designate which Compounds should be treated as rigid bodies

If no arguments are provided, this function will treat the compound as a single rigid body
by providing all particles in self with the same rigid_id. If discrete_bodies is not None, each
instance of a Compound with a name found in discrete_bodies will be treated as a unique
rigid body. If rigid_particles is not None, only Particles (Compounds at the bottom of the
containment hierarchy) matching this name will be considered part of the rigid body.

Parameters

discrete_bodies [str or list of str, optional, default=None] Name(s) of Com-
pound instances to be treated as unique rigid bodies. Compound instances
matching this (these) name(s) will be provided with unique rigid_ids

rigid_particles [str or list of str, optional, default=None] Name(s) of Com-
pound instances at the bottom of the containment hierarchy (Particles) to
be included in rigid bodies. Only Particles matching this (these) name(s) will
have their rigid_ids altered to match the rigid body number.

Examples

Creating a rigid benzene

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> benzene = mb.load(get_fn('benzene.mol2'))
>>> benzene.label_rigid_bodies()

Creating a semi-rigid benzene, where only the carbons are treated as a rigid body

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> benzene = mb.load(get_fn('benzene.mol2'))
>>> benzene.label_rigid_bodies(rigid_particles='C')

Create a box of rigid benzenes, where each benzene has a unique rigid body ID.

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> benzene = mb.load(get_fn('benzene.mol2'))
>>> benzene.name = 'Benzene'
>>> filled = mb.fill_box(benzene,
... n_compounds=10,

(continues on next page)
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(continued from previous page)

... box=[0, 0, 0, 4, 4, 4])
>>> filled.label_rigid_bodies(distinct_bodies='Benzene')

Create a box of semi-rigid benzenes, where each benzene has a unique rigid body ID and
only the carbon portion is treated as rigid.

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> benzene = mb.load(get_fn('benzene.mol2'))
>>> benzene.name = 'Benzene'
>>> filled = mb.fill_box(benzene,
... n_compounds=10,
... box=[0, 0, 0, 4, 4, 4])
>>> filled.label_rigid_bodies(distinct_bodies='Benzene',
... rigid_particles='C')

max_rigid_id
Returns the maximum rigid body ID contained in the Compound.

This is usually used by compound.root to determine the maximum rigid_id in the contain-
ment hierarchy.

Returns

int or None The maximum rigid body ID contained in the Compound. If no
rigid body IDs are found, None is returned

min_periodic_distance(self, xyz0, xyz1)
Vectorized distance calculation considering minimum image.

Parameters

xyz0 [np.ndarray, shape=(3,), dtype=float] Coordinates of first point

xyz1 [np.ndarray, shape=(3,), dtype=float] Coordinates of second point

Returns

float Vectorized distance between the two points following minimum image
convention

n_bonds
Return the number of bonds in the Compound.

Returns

int The number of bonds in the Compound

n_particles
Return the number of Particles in the Compound.

Returns

int The number of Particles in the Compound

particles(self, include_ports=False)
Return all Particles of the Compound.

Parameters

include_ports [bool, optional, default=False] Include port particles

Yields

mb.Compound The next Particle in the Compound
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particles_by_name(self, name)
Return all Particles of the Compound with a specific name

Parameters

name [str] Only particles with this name are returned

Yields

mb.Compound The next Particle in the Compound with the user-specified
name

particles_in_range(self, compound, dmax, max_particles=20, particle_kdtree=None, parti-
cle_array=None)

Find particles within a specified range of another particle.

Parameters

compound [mb.Compound] Reference particle to find other particles in range
of

dmax [float] Maximum distance from ‘compound’ to look for Particles

max_particles [int, optional, default=20] Maximum number of Particles to re-
turn

particle_kdtree [mb.PeriodicCKDTree, optional] KD-tree for looking up near-
est neighbors. If not provided, a KD- tree will be generated from all Particles
in self

particle_array [np.ndarray, shape=(n,), dtype=mb.Compound, optional] Array
of possible particles to consider for return. If not provided, this defaults to
all Particles in self

Returns

np.ndarray, shape=(n,), dtype=mb.Compound Particles in range of compound
according to user-defined limits

See also:

periodic_kdtree.PerioidicCKDTree mBuild implementation of kd-trees

scipy.spatial.ckdtree Further details on kd-trees

referenced_ports(self)
Return all Ports referenced by this Compound.

Returns

list of mb.Compound A list of all ports referenced by the Compound

remove(self, objs_to_remove)
Cleanly remove children from the Compound.

Parameters

objs_to_remove [mb.Compound or list of mb.Compound] The Compound(s)
to be removed from self

remove_bond(self, particle_pair)
Deletes a bond between a pair of Particles

Parameters

particle_pair [indexable object, length=2, dtype=mb.Compound] The pair of
Particles to remove the bond between
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rigid_particles(self, rigid_id=None)
Generate all particles in rigid bodies.

If a rigid_id is specified, then this function will only yield particles with a matching rigid_id.

Parameters

rigid_id [int, optional] Include only particles with this rigid body ID

Yields

mb.Compound The next particle with a rigid_id that is not None, or the next
particle with a matching rigid_id if specified

root
The Compound at the top of self’s hierarchy.

Returns

mb.Compound The Compound at the top of self’s hierarchy

rotate(self, theta, around)
Rotate Compound around an arbitrary vector.

Parameters

theta [float] The angle by which to rotate the Compound, in radians.

around [np.ndarray, shape=(3,), dtype=float] The vector about which to rotate
the Compound.

save(self, filename, show_ports=False, forcefield_name=None, forcefield_files=None, force-
field_debug=False, box=None, overwrite=False, residues=None, combining_rule=’lorentz’,
foyer_kwargs=None, **kwargs)

Save the Compound to a file.

Parameters

filename [str] Filesystem path in which to save the trajectory. The extension
or prefix will be parsed and control the format. Supported extensions are:
‘hoomdxml’, ‘gsd’, ‘gro’, ‘top’, ‘lammps’, ‘lmp’, ‘mcf’

show_ports [bool, optional, default=False] Save ports contained within the
compound.

forcefield_files [str, optional, default=None] Apply a forcefield to the output
file using a forcefield provided by the foyer package.

forcefield_name [str, optional, default=None] Apply a named forcefield to the
output file using the foyer package, e.g. ‘oplsaa’. Forcefields listed here:
https://github.com/mosdef-hub/foyer/tree/master/foyer/forcefields

forcefield_debug [bool, optional, default=False] Choose level of verbosity
when applying a forcefield through foyer. Specifically, when missing atom
types in the forcefield xml file, determine if the warning is condensed or
verbose.

box [mb.Box, optional, default=self.boundingbox (with buffer)] Box informa-
tion to be written to the output file. If ‘None’, a bounding box is used with
0.25nm buffers at each face to avoid overlapping atoms.

overwrite [bool, optional, default=False] Overwrite if the filename already ex-
ists

residues [str of list of str] Labels of residues in the Compound. Residues are
assigned by checking against Compound.name.
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combining_rule [str, optional, default=’lorentz’] Specify the combining rule for
nonbonded interactions. Only relevant when the foyer package is used to
apply a forcefield. Valid options are ‘lorentz’ and ‘geometric’, specifying
Lorentz-Berthelot and geometric combining rules respectively.

foyer_kwargs [dict, optional, default=None] Keyword arguments to provide to
foyer.Forcefield.apply.

**kwargs Depending on the file extension these will be passed to
either write_gsd, write_hoomdxml, write_lammpsdata, write_mcf, or
parmed.Structure.save. See https://parmed.github.io/ParmEd/html/
structobj/parmed.structure.Structure.html#parmed.structure.Structure.save

Other Parameters

ref_distance [float, optional, default=1.0] Normalization factor used when sav-
ing to .gsd and .hoomdxml formats for converting distance values to reduced
units.

ref_energy [float, optional, default=1.0] Normalization factor used when sav-
ing to .gsd and .hoomdxml formats for converting energy values to reduced
units.

ref_mass [float, optional, default=1.0] Normalization factor used when saving
to .gsd and .hoomdxml formats for converting mass values to reduced units.

atom_style: str, default=’full’ Defines the style of atoms to be saved in a
LAMMPS data file. The following atom styles are currently supported:
‘full’, ‘atomic’, ‘charge’, ‘molecular’ see http://lammps.sandia.gov/doc/
atom_style.html for more information on atom styles.

unit_style: str, default=’real’ Defines to unit style to be save in a LAMMPS
data file. Defaults to ‘real’ units. Current styles are supported: ‘real’, ‘lj’
see https://lammps.sandia.gov/doc/99/units.html for more information on
unit styles

See also:

formats.gsdwrite.write_gsd Write to GSD format

formats.hoomdxml.write_hoomdxml Write to Hoomd XML format

formats.xyzwriter.write_xyz Write to XYZ format

formats.lammpsdata.write_lammpsdata Write to LAMMPS data format

formats.cassandramcf.write_mcf Write to Cassandra MCF format

formats.json_formats.compound_to_json Write to a json file

Notes

When saving the compound as a json, only the following arguments are used:

• filename

• show_ports

spin(self, theta, around)
Rotate Compound in place around an arbitrary vector.

Parameters

theta [float] The angle by which to rotate the Compound, in radians.
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around [np.ndarray, shape=(3,), dtype=float] The axis about which to spin the
Compound.

successors(self)
Yield Compounds below self in the hierarchy.

Yields

mb.Compound The next Particle below self in the hierarchy

to_intermol(self, molecule_types=None)
Create an InterMol system from a Compound.

Parameters

molecule_types [list or tuple of subclasses of Compound]

Returns

intermol_system [intermol.system.System]

to_networkx(self, names_only=False)
Create a NetworkX graph representing the hierarchy of a Compound.

Parameters

names_only [bool, optional, default=False]

Store only the names of the compounds in the graph, appended with their
IDs, for distinction even if they have the same name. When set to False,
the default behavior, the nodes are the compounds themselves.

Returns

G [networkx.DiGraph]

See also:

mbuild.bond_graph

Notes

This digraph is not the bondgraph of the compound.

to_parmed(self, box=None, title=”, residues=None, show_ports=False, infer_residues=False)
Create a ParmEd Structure from a Compound.

Parameters

box [mb.Box, optional, default=self.boundingbox (with buffer)] Box informa-
tion to be used when converting to a Structure. If ‘None’, a bounding box
is used with 0.25nm buffers at each face to avoid overlapping atoms, unless
self.periodicity is not None, in which case those values are used for the box
lengths.

title [str, optional, default=self.name] Title/name of the ParmEd Structure

residues [str of list of str] Labels of residues in the Compound. Residues are
assigned by checking against Compound.name.

show_ports [boolean, optional, default=False] Include all port atoms when
converting to a Structure.

infer_residues [bool, optional, default=False] Attempt to assign residues based
on names of children.

Returns
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parmed.structure.Structure ParmEd Structure object converted from self

See also:

parmed.structure.Structure Details on the ParmEd Structure object

to_pybel(self, box=None, title=”, residues=None, show_ports=False, infer_residues=False)
Create a pybel.Molecule from a Compound

box : mb.Box, def None title : str, optional, default=self.name

Title/name of the ParmEd Structure

residues [str of list of str] Labels of residues in the Compound. Residues are assigned by
checking against Compound.name.

show_ports [boolean, optional, default=False] Include all port atoms when converting to a
Structure.

infer_residues [bool, optional, default=False] Attempt to assign residues based on names
of children

pybel.Molecule

Notes

Most of the mb.Compound is first converted to openbabel.OBMol And then pybel creates
a pybel.Molecule from the OBMol Bond orders are assumed to be 1 OBMol atom indexing
starts at 1, with spatial dimension Angstrom

to_trajectory(self, show_ports=False, chains=None, residues=None, box=None)
Convert to an md.Trajectory and flatten the compound.

Parameters

show_ports [bool, optional, default=False] Include all port atoms when con-
verting to trajectory.

chains [mb.Compound or list of mb.Compound] Chain types to add to the
topology

residues [str of list of str] Labels of residues in the Compound. Residues are
assigned by checking against Compound.name.

box [mb.Box, optional, default=self.boundingbox (with buffer)] Box informa-
tion to be used when converting to a Trajectory. If ‘None’, a bounding box
is used with a 0.5nm buffer in each dimension. to avoid overlapping atoms,
unless self.periodicity is not None, in which case those values are used for the
box lengths.

Returns

trajectory [md.Trajectory]

See also:

_to_topology

translate(self, by)
Translate the Compound by a vector

Parameters
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by [np.ndarray, shape=(3,), dtype=float]

translate_to(self, pos)
Translate the Compound to a specific position

Parameters

pos [np.ndarray, shape=3(,), dtype=float]

unlabel_rigid_bodies(self)
Remove all rigid body labels from the Compound

update_coordinates(self, filename, update_port_locations=True)
Update the coordinates of this Compound from a file.

Parameters

filename [str] Name of file from which to load coordinates. Supported file
types are the same as those supported by load()

update_port_locations [bool, optional, default=True] Update the locations of
Ports so that they are shifted along with their anchor particles. Note: This
conserves the location of Ports with respect to the anchor Particle, but does
not conserve the orientation of Ports with respect to the molecule as a whole.

See also:

load Load coordinates from a file

visualize(self, show_ports=False, backend=’py3dmol’, color_scheme={})
Visualize the Compound using py3dmol (default) or nglview.

Allows for visualization of a Compound within a Jupyter Notebook.

Parameters

show_ports [bool, optional, default=False] Visualize Ports in addition to Parti-
cles

backend [str, optional, default=’py3dmol’] Specify the backend package to vi-
sualize compounds Currently supported: py3dmol, nglview

color_scheme [dict, optional] Specify coloring for non-elemental particles keys
are strings of the particle names values are strings of the colors i.e. {‘_CG-
BEAD’: ‘blue’}

xyz
Return all particle coordinates in this compound.

Returns

pos [np.ndarray, shape=(n, 3), dtype=float] Array with the positions of all par-
ticles.

xyz_with_ports
Return all particle coordinates in this compound including ports.

Returns

pos [np.ndarray, shape=(n, 3), dtype=float] Array with the positions of all par-
ticles and ports.
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4.2 Port

class mbuild.port.Port(anchor=None, orientation=None, separation=0)
A set of four ghost Particles used to connect parts.

Parameters

anchor [mb.Particle, optional, default=None] A Particle associated with the port.
Used to form bonds.

orientation [array-like, shape=(3,), optional, default=[0, 1, 0]] Vector along which
to orient the port

separation [float, optional, default=0] Distance to shift port along the orientation
vector from the anchor particle position. If no anchor is provided, the port will
be shifted from the origin.

Attributes

anchor [mb.Particle, optional, default=None] A Particle associated with the port.
Used to form bonds.

up [mb.Compound] Collection of 4 ghost particles used to perform equivalence
transforms. Faces the opposite direction as self[‘down’].

down [mb.Compound] Collection of 4 ghost particles used to perform equivalence
transforms. Faces the opposite direction as self[‘up’].

used [bool] Status of whether a port has been occupied following an equivalence
transform.

access_labels
List of labels used to access the Port

Returns

list of str Strings that can be used to access this Port relative to self.root

center
The cartesian center of the Port

direction
The unit vector pointing in the ‘direction’ of the Port

5 Coordinate transformations

The following utility functions provide mechanisms for spatial transformations for mbuild com-
pounds:

mbuild.coordinate_transform.force_overlap(move_this, from_positions, to_positions,
add_bond=True)

Computes an affine transformation that maps the from_positions to the respective to_positions,
and applies this transformation to the compound.

Parameters

move_this [mb.Compound] The Compound to be moved.

from_positions [np.ndarray, shape=(n, 3), dtype=float] Original positions.

to_positions [np.ndarray, shape=(n, 3), dtype=float] New positions.

add_bond [bool, optional, default=True] If from_positions and to_positions are Ports,
create a bond between the two anchor atoms.
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mbuild.coordinate_transform.translate(*args, **kwargs)

mbuild.coordinate_transform.translate_to(*args, **kwargs)

mbuild.coordinate_transform.rotate(*args, **kwargs)

mbuild.coordinate_transform.spin(*args, **kwargs)

mbuild.coordinate_transform.x_axis_transform(compound, new_origin=None,
point_on_x_axis=None,
point_on_xy_plane=None)

Move a compound such that the x-axis lies on specified points.

Parameters

compound [mb.Compound] The compound to move.

new_origin [mb.Compound or list-like of size 3, optional, default=[0.0, 0.0, 0.0]]
Where to place the new origin of the coordinate system.

point_on_x_axis [mb.Compound or list-like of size 3, optional, default=[1.0, 0.0,
0.0]] A point on the new x-axis.

point_on_xy_plane [mb.Compound, or list-like of size 3, optional, default=[1.0,
0.0, 0.0]] A point on the new xy-plane.

mbuild.coordinate_transform.y_axis_transform(compound, new_origin=None,
point_on_y_axis=None,
point_on_xy_plane=None)

Move a compound such that the y-axis lies on specified points.

Parameters

compound [mb.Compound] The compound to move.

new_origin [mb.Compound or like-like of size 3, optional, default=[0.0, 0.0, 0.0]]
Where to place the new origin of the coordinate system.

point_on_y_axis [mb.Compound or list-like of size 3, optional, default=[0.0, 1.0,
0.0]] A point on the new y-axis.

point_on_xy_plane [mb.Compound or list-like of size 3, optional, default=[0.0,
1.0, 0.0]] A point on the new xy-plane.

mbuild.coordinate_transform.z_axis_transform(compound, new_origin=None,
point_on_z_axis=None,
point_on_zx_plane=None)

Move a compound such that the z-axis lies on specified points.

Parameters

compound [mb.Compound] The compound to move.

new_origin [mb.Compound or list-like of size 3, optional, default=[0.0, 0.0, 0.0]]
Where to place the new origin of the coordinate system.

point_on_z_axis [mb.Compound or list-like of size 3, optional, default=[0.0, 0.0,
1.0]] A point on the new z-axis.

point_on_zx_plane [mb.Compound or list-like of size 3, optional, default=[0.0,
0.0, 1.0]] A point on the new xz-plane.
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6 Recipes

6.1 Monolayer

class mbuild.lib.recipes.monolayer.Monolayer(surface, chains, fractions=None, back-
fill=None, pattern=None, tile_x=1,
tile_y=1, **kwargs)

A general monolayer recipe.

Parameters

surface [mb.Compound] Surface on which the monolayer will be built.

chains [list of mb.Compounds] The chains to be replicated and attached to the
surface.

fractions [list of floats] The fractions of the pattern to be allocated to each chain.

backfill [list of mb.Compound, optional, default=None] If there are fewer chains
than there are ports on the surface, copies of backfill will be used to fill the
remaining ports.

pattern [mb.Pattern, optional, default=mb.Random2DPattern] An array of planar
binding locations. If not provided, the entire surface will be filled with chain.

tile_x [int, optional, default=1] Number of times to replicate substrate in x-
direction.

tile_y [int, optional, default=1] Number of times to replicate substrate in y-
direction.

6.2 Polymer

class mbuild.lib.recipes.polymer.Polymer(monomers, n, sequence=’A’, port_labels=(’up’,
’down’))

Connect one or more components in a specified sequence.

Parameters

monomers [mb.Compound or list of mb.Compound] The compound(s) to repli-
cate.

n [int] The number of times to replicate the sequence.

sequence [str, optional, default=’A’] A string of characters where each unique
character represents one repetition of a monomer. Characters in sequence are
assigned to monomers in the order assigned by the built-in sorted().

port_labels [2-tuple of strs, optional, default=(‘up’, ‘down’)] The names of the two
ports to use to connect copies of proto.

6.3 Tiled Compound

class mbuild.lib.recipes.tiled_compound.TiledCompound(tile, n_tiles, name=None)
Replicates a Compound in any cartesian direction(s).

Correctly updates connectivity while respecting periodic boundary conditions.

Parameters

tile [mb.Compound] The Compound to be replicated.
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n_tiles [array-like, shape=(3,), dtype=int, optional, default=(1, 1, 1)] Number of
times to replicate tile in the x, y and z-directions.

name [str, optional, default=tile.name] Descriptive string for the compound.

6.4 Silica Interface

class mbuild.lib.recipes.silica_interface.SilicaInterface(bulk_silica, tile_x=1,
tile_y=1, thickness=1.0,
seed=12345)

A recipe for creating an interface from bulk silica.

Carves silica interface from bulk, adjusts to a reactive surface site density of 5.0 sites/nm^2

(agreeing with experimental results, see Zhuravlev 2000) by creating Si-O-Si bridges, and yields
a 2:1 Si:O ratio (excluding the reactive surface sites).

Parameters

bulk_silica [mb.Compound] Bulk silica from which to cleave an interface

tile_x [int, optional, default=1] Number of times to replicate bulk silica in x-
direction

tile_y [int, optional, default=1] Number of times to replicate bulk silica in y-
direction

thickness [float, optional, default=1.0] Thickness of the slab to carve from the
silica bulk. (in nm; not including oxygen layers on the top and bottom of the
surface)

References

[1], [2]

6.5 Lattice

class mbuild.lattice.Lattice(lattice_spacing=None, lattice_vectors=None, lat-
tice_points=None, angles=None)

Develop crystal structure from user defined inputs.

Lattice, the abstract building block of a crystal cell. Once defined by the user, the lattice can then
be populated with Compounds and replicated as many cell lengths desired in 3D space.

A Lattice is defined through the Bravais lattice definitions. With edge vectors a1, a2, a3; lattice
spacing a,b,c; and lattice points at unique fractional positions between 0-1 in 3 dimensions. This
encapsulates distance, area, volume, depending on the parameters defined.

Parameters

lattice_spacing [array-like, shape=(3,), required, dtype=float] Array of lattice
spacings a,b,c for the cell.

lattice_vectors [array-like, shape=(3, 3), optional]

default=[[1,0,0], [0,1,0], [0,0,1]]

Vectors that encase the unit cell corresponding to dimension. Will only default
to these values if no angles were defined as well.

lattice_points [dictionary, shape={‘id’: [[nested list of positions]]] optional, de-
fault={‘default’: [[0.,0.,0.]]} Locations of all lattice points in cell using fractional
coordinates.
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angles [array-like, shape=(3,), optional, dtype=float] Array of inter-planar Bravais
angles in degrees.

Examples

Generating a triclinic lattice for cholesterol.

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> # reading in the lattice parameters for crystalline cholesterol
>>> angle_values = [94.64, 90.67, 96.32]
>>> spacing = [1.4172, 3.4209, 1.0481]
>>> basis = {'cholesterol':[[0., 0., 0.]]}
>>> cholesterol_lattice = mb.Lattice(spacing,
... angles=angle_values,
... lattice_points=basis)

>>> # The lattice based on the bravais lattice parameters of crystalline
>>> # cholesterol was generated.

>>> # Replicating the triclinic unit cell out 3 replications
>>> # in x,y,z directions.

>>> cholesterol_unit = mb.Compound()
>>> cholesterol_unit = mb.load(get_fn('cholesterol.pdb'))
>>> # associate basis vector with id 'cholesterol' to cholesterol Compound
>>> basis_dictionary = {'cholesterol' : cholesterol_unit}
>>> expanded_cell = cholesterol_lattice.populate(x=3, y=3, z=3,
... compound_dict=basis_dictionary)

The unit cell of cholesterol was associated with a Compound that contains the connectivity data
and spatial arrangements of a cholesterol molecule. The unit cell was then expanded out in x,y,z
directions and cholesterol Compounds were populated.

Generating BCC CsCl crystal structure

>>> import mbuild as mb
>>> chlorine = mb.Compound(name='Cl')
>>> # angles not needed, when not provided, defaults to 90,90,90
>>> cesium = mb.Compound(name='Cs')
>>> spacing = [.4123, .4123, .4123]
>>> basis = {'Cl' : [[0., 0., 0.]], 'Cs' : [[.5, .5, .5]]}
>>> cscl_lattice = mb.Lattice(spacing, lattice_points=basis)

>>> # Now associate id with Compounds for lattice points and replicate 3x

>>> cscl_dict = {'Cl' : chlorine, 'Cs' : cesium}
>>> cscl_compound = cscl_lattice.populate(x=3, y=3, z=3,
... compound_dict=cscl_dict)

A multi-Compound basis was created and replicated. For each unique basis atom position, a
separate entry must be completed for the basis_atom input.

Generating FCC Copper cell with lattice_vectors instead of angles

>>> import mbuild as mb
>>> copper = mb.Compound(name='Cu')

(continues on next page)
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(continued from previous page)

>>> lattice_vector = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
>>> spacing = [.36149, .36149, .36149]
>>> copper_locations = [[0., 0., 0.], [.5, .5, 0.],
... [.5, 0., .5], [0., .5, .5]]
>>> basis = {'Cu' : copper_locations}
>>> copper_lattice = mb.Lattice(lattice_spacing = spacing,
... lattice_vectors=lattice_vector,
... lattice_points=basis)
>>> copper_dict = {'Cu' : copper}
>>> copper_pillar = copper_lattice.populate(x=3, y=3, z=20,
... compound_dict=copper_dict)

Generating the 2d Structure Graphene carbon backbone

>>> import mbuild as mb
>>> carbon = mb.Compound(name='C')
>>> angles = [90, 90, 120]
>>> carbon_locations = [[0, 0, 0], [2/3, 1/3, 0]]
>>> basis = {'C' : carbon_locations}
>>> graphene = mb.Lattice(lattice_spacing=[.2456, .2456, 0],
... angles=angles, lattice_points=basis)
>>> carbon_dict = {'C' : carbon}
>>> graphene_cell = graphene.populate(compound_dict=carbon_dict,
... x=3, y=3, z=1)

Attributes

dimension [int, 3] Default dimensionality within mBuild. If choosing a lower
dimension, pad the relevant arrays with zeroes.

lattice_spacing [numpy array, shape=(3,), required, dtype=float] Array of lattice
spacings a,b,c for the cell.

lattice_vectors [numpy array, shape=(3, 3), optional]

default=[[1,0,0], [0,1,0], [0,0,1]]

Vectors that encase the unit cell corresponding to dimension. Will only default
to these values if no angles were defined as well.

lattice_points [dictionary, shape={‘id’: [[nested list of positions]]] optional, de-
fault={‘default’: [[0.,0.,0.]]} Locations of all lattice points in cell using fractional
coordinates.

angles [numpy array, shape=(3,), optional, dtype=float] Array of inter-planar Bra-
vais angles

get_populated_box(self, x=1, y=1, z=1)
Return a mbuild.Box representing the periodic boundaries of a populated mbuild.Lattice.
This is meant to be called in parallel with, and using the same arguments of, a call to
mb.Lattice.populate().

Parameters

x [int, optional, default=1] How many iterations in the x direction.

y [int, optional, default=1] How many iterations in the y direction.

z [int, optional, default=1] How many iterations in the z direction.

populate(self, compound_dict=None, x=1, y=1, z=1)
Expand lattice and create compound from lattice.
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Expands lattice based on user input. The user must also pass in a dictionary that contains
the keys that exist in the basis_dict. The corresponding Compound will be the full lattice
returned to the user.

If no dictionary is passed to the user, Dummy Compounds will be used.

Parameters

x [int, optional, default=1] How many iterations in the x direction.

y [int, optional, default=1] How many iterations in the y direction.

z [int, optional, default=1] How many iterations in the z direction.

compound_dict [dictionary, optional, default=None] Link between basis_dict
and Compounds.

6.6 Packing

mbuild.packing.fill_box(compound, n_compounds=None, box=None, density=None, overlap=0.2,
seed=12345, edge=0.2, compound_ratio=None, aspect_ratio=None,
fix_orientation=False, temp_file=None, update_port_locations=False)

Fill a box with a mbuild.compound or ‘Compound‘s using PACKMOL.

fill_box takes a single mbuild.Compound or a list of mbuild.Compound’s and return an
mbuild.Compound that has been filled to the user’s specifications to the best of PACKMOL’s ability.

When filling a system, two arguments of n_compounds, box, and density must be speci-
fied.

If n_compounds and box are not None, the specified number of n_compounds will be
inserted into a box of the specified size.

If n_compounds and density are not None, the corresponding box size will be calculated
internally. In this case, n_compounds must be an int and not a list of int.

If box and density are not None, the corresponding number of compounds will be
calculated internally.

For the cases in which box is not specified but generated internally, the default behavior
is to calculate a cubic box. Optionally, aspect_ratio can be passed to generate a non-cubic
box.

Parameters

compound [mb.Compound or list of mb.Compound]

Compound or list of compounds to fill in box.

n_compounds [int or list of int] Number of compounds to be filled in box.

box [mb.Box] Box to be filled by compounds.

density [float, units kg/m^3, default=None] Target density for the system in
macroscale units. If not None, one of n_compounds or box, but not both, must
be specified.

overlap [float, units nm, default=0.2] Minimum separation between atoms of
different molecules.

seed [int, default=12345] Random seed to be passed to PACKMOL.

edge [float, units nm, default=0.2] Buffer at the edge of the box to not place
molecules. This is necessary in some systems because PACKMOL does not
account for periodic boundary conditions in its optimization.
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compound_ratio [list, default=None] Ratio of number of each compound to be
put in box. Only used in the case of density and box having been specified,
n_compounds not specified, and more than one compound.

aspect_ratio [list of float] If a non-cubic box is desired, the ratio of box lengths
in the x, y, and z directions.

fix_orientation [bool or list of bools] Specify that compounds should not be
rotated when filling the box, default=False.

temp_file [str, default=None] File name to write PACKMOL’s raw output to.

update_port_locations [bool, default=False] After packing, port locations can
be updated, but since compounds can be rotated, port orientation may be
incorrect.

Returns

filled [mb.Compound]

mbuild.packing.fill_region(compound, n_compounds, region, overlap=0.2, seed=12345,
edge=0.2, fix_orientation=False, temp_file=None, up-
date_port_locations=False)

Fill a region of a box with ‘mbuild.Compound‘(s) using PACKMOL.

Parameters

compound [mb.Compound or list of mb.Compound] Compound or list of com-
pounds to fill in region.

n_compounds [int or list of ints] Number of compounds to be put in region.

region [mb.Box or list of mb.Box] Region to be filled by compounds.

overlap [float, units nm, default=0.2] Minimum separation between atoms of dif-
ferent molecules.

seed [int, default=12345] Random seed to be passed to PACKMOL.

edge [float, units nm, default=0.2] Buffer at the edge of the region to not place
molecules. This is necessary in some systems because PACKMOL does not
account for periodic boundary conditions in its optimization.

fix_orientation [bool or list of bools] Specify that compounds should not be ro-
tated when filling the box, default=False.

temp_file [str, default=None] File name to write PACKMOL’s raw output to.

update_port_locations [bool, default=False] After packing, port locations can be
updated, but since compounds can be rotated, port orientation may be incor-
rect.

Returns

filled [mb.Compound]

If using mulitple regions and compounds, the nth value in each

list are used in order.

For example, if the third compound will be put in the third

region using the third value in n_compounds.
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mbuild.packing.fill_sphere(compound, sphere, n_compounds=None, den-
sity=None, overlap=0.2, seed=12345, edge=0.2, com-
pound_ratio=None, fix_orientation=False, temp_file=None, up-
date_port_locations=False)

Fill a sphere with a compound using packmol.

One argument of n_compounds and density must be specified.

If n_compounds is not None, the specified number of n_compounds will be inserted into a sphere
of the specified size.

If density is not None, the corresponding number of compounds will be calculated internally.

Parameters

compound [mb.Compound or list of mb.Compound] Compound or list of com-
pounds to be put in box.

sphere [list, units nm] Sphere coordinates in the form [x_center, y_center, z_center,
radius]

n_compounds [int or list of int] Number of compounds to be put in box.

density [float, units kg/m^3, default=None] Target density for the sphere in
macroscale units.

overlap [float, units nm, default=0.2] Minimum separation between atoms of dif-
ferent molecules.

seed [int, default=12345] Random seed to be passed to PACKMOL.

edge [float, units nm, default=0.2] Buffer at the edge of the sphere to not place
molecules. This is necessary in some systems because PACKMOL does not
account for periodic boundary conditions in its optimization.

compound_ratio [list, default=None] Ratio of number of each compound to be put
in sphere. Only used in the case of density having been specified, n_compounds
not specified, and more than one compound.

fix_orientation [bool or list of bools] Specify that compounds should not be ro-
tated when filling the sphere, default=False.

temp_file [str, default=None] File name to write PACKMOL’s raw output to.

update_port_locations [bool, default=False] After packing, port locations can be
updated, but since compounds can be rotated, port orientation may be incor-
rect.

Returns

filled [mb.Compound]

mbuild.packing.solvate(solute, solvent, n_solvent, box, overlap=0.2, seed=12345, edge=0.2,
fix_orientation=False, temp_file=None, update_port_locations=False)

Solvate a compound in a box of solvent using packmol.

Parameters

solute [mb.Compound] Compound to be placed in a box and solvated.

solvent [mb.Compound] Compound to solvate the box.

n_solvent [int] Number of solvents to be put in box.

box [mb.Box] Box to be filled by compounds.

overlap [float, units nm, default=0.2] Minimum separation between atoms of dif-
ferent molecules.
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seed [int, default=12345] Random seed to be passed to PACKMOL.

edge [float, units nm, default=0.2] Buffer at the edge of the box to not place
molecules. This is necessary in some systems because PACKMOL does not
account for periodic boundary conditions in its optimization.

fix_orientation [bool] Specify if solvent should not be rotated when filling box,
default=False.

temp_file [str, default=None] File name to write PACKMOL’s raw output to.

update_port_locations [bool, default=False] After packing, port locations can be
updated, but since compounds can be rotated, port orientation may be incor-
rect.

Returns

solvated [mb.Compound]

6.7 Pattern

class mbuild.pattern.Pattern(points, orientations=None, scale=None, **kwargs)
A superclass for molecules spatial Patterns.

Patterns refer to how molecules are arranged either in a box (volume) or 2-D surface. This class
could serve as a superclass for different molecules patterns

Attributes

points [array or np.array] Positions of molecules in surface or space

orientations [dict, optional, default=None] Orientations of ports

scale [float, optional, default=None] Scale the points in the Pattern.

apply(self, compound, orientation=”, compound_port=”)
Arrange copies of a Compound as specified by the Pattern.

Parameters

compound [mb.Compound] mb.Compound to be applied new pattern

orientation [dict, optional, default=’‘] New orientations for ports in compound

compound_port [list, optional, default=None] Ports to be applied new orien-
tations

Returns

compound [mb.Compound] mb.Compound with applied pattern

apply_to_compound(self, guest, guest_port_name=’down’, host=None, backfill=None, back-
fill_port_name=’up’, scale=True)

Attach copies of a guest Compound to Ports on a host Compound.

Parameters

guest [mb.Compound] The Compound prototype to be applied to the host
Compound

guest_port_name [str, optional, default=’down’] The name of the port located
on guest to attach to the host

host [mb.Compound, optional, default=None] A Compound with available
ports to add copies of guest to
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backfill [mb.Compound, optional, default=None] A Compound to add to the
remaining available ports on host after clones of guest have been added for
each point in the pattern

backfill_port_name [str, optional, default=’up’] The name of the port located
on backfill to attach to the host

scale [bool, optional, default=True] Scale the points in the pattern to the lengths
of the host’s boundingbox and shift them by the boundingbox’s mins

Returns

guests [list of mb.Compound] List of inserted guest compounds on host com-
pound

backfills [list of mb.Compound] List of inserted backfill compounds on host
compound

scale(self, by)
Scale the points in the Pattern.

Parameters

by [float or np.ndarray, shape=(3,)] The factor to scale by. If a scalar, scale all
directions isotropically. If np.ndarray, scale each direction independently

class mbuild.pattern.DiskPattern(n, **kwargs)
Generate N evenly distributed points on the unit circle along z = 0.

Disk is centered at the origin. Algorithm based on Vogel’s method.

Code by Alexandre Devert: http://blog.marmakoide.org/?p=1

class mbuild.pattern.SpherePattern(n, **kwargs)
Generate N evenly distributed points on the unit sphere.

Sphere is centered at the origin. Alrgorithm based on the ‘Golden Spiral’.

Code by Chris Colbert from the numpy-discussion list: http://mail.scipy.org/pipermail/
numpy-discussion/2009-July/043811.html

class mbuild.pattern.Random2DPattern(n, seed=None, **kwargs)

class mbuild.pattern.Random3DPattern(n, seed=None, **kwargs)
Generate n random points on a 3D grid

Attributes

n [int] Number of points to generate

seed [int] Seed for random number generation

class mbuild.pattern.Grid2DPattern(n, m, **kwargs)
Generate a 2D grid (n x m) of points along z = 0

Notes

Points span [0,1) along x and y axes

n [int] Number of grid rows

m [int] Number of grid columns

class mbuild.pattern.Grid3DPattern(n, m, l, **kwargs)
Generate a 3D grid (n x m x l) of points
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Notes

Points span [0,1) along x, y, and z axes

n [int] Number of grid rows

m [int] Number of grid columns

l [int] Number of grid aisles

7 Citing mBuild

If you use mBuild for your research, please cite our paper10:
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Klein, C.; Sallai, J.; Jones, T. J.; Iacovella, C. R.; McCabe, C.; Cummings, P. T. A Hierarchi-
cal, Component Based Approach to Screening Properties of Soft Matter. In Foundations of
Molecular Modeling and Simulation. Molecular Modeling and Simulation (Applications and Per-
spectives); Snurr, R. Q., Adjiman, C. S., Kofke, D. A., Eds.; Springer, Singapore, 2016; pp
79-92.

BibTeX

@Inbook{Klein2016mBuild,
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editor = "Snurr, Randall Q and Adjiman, Claire S. and Kofke, David A.",
title = "A Hierarchical, Component Based Approach to Screening Properties of␣

↪→Soft Matter",
bookTitle = "Foundations of Molecular Modeling and Simulation: Select Papers from␣

↪→FOMMS 2015",
year = "2016",
publisher = "Springer Singapore",
address = "Singapore",
pages = "79--92",
isbn = "978-981-10-1128-3",
doi = "10.1007/978-981-10-1128-3_5",
url = "https://doi.org/10.1007/978-981-10-1128-3_5"

}

Download as BibTeX or RIS
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